Team 302

Development of a Prototype Mover Robot (PMR) for use in a Mobile Thermal Depolymerization Plant

Seth Tumlin,

Chassis

- Inspired by the Nara Cricket
- 3D printed PLA legs
- 3 spur gear drivetrain
- Unique front-serrations allow the robot to go over obstacles
- Driven by two large motors
- Tightly packed sensor area allows for dual-sensor line following and ultra-sonic can detection

Body

- Compact design allows for high mobility
- Strategically placed brick and attachment point eliminate need for other balancing weights

Arm

- 5:1 worm gear drive
- Driven by medium motor
- Rubber bands prevent shaking during movement

Attachment Point

- Compact design allows for high mobility
- Strategically placed brick and claw eliminate need for other balancing weights
- Utilizes a vertical force sensor to determine weight at all angles
- Rubber bands create a firm hold
- Back spur allows self-zeroing for the force sensor

Aesthetics

- Color choice of pieces used follows a visual theme
- Functional and aesthetic consideration was put into design of the 3D printed parts
- Added side elements printed in a red accent to make the robot look cooler

Arm Control

- Arm running on 2-millisecond proportional-closed-loop control using internal motor encoder
- Specific angles can be targeted and achieved

Walking Control

- Running on 1-millisecond PID closed-loop control using internal motor encoders
- Legs must be synchronized so we used a PID setpoint based on both of the sides rather than having a single side as the master
- Automatic turning based on light sensors

Operational Modes

- Operational modes were run parallel to looped control
- Utilized flat sequence structures and while loops
- Local variables were used to communicate between parallel structures

Requirements Met

• Met all but one requirement last night; at the demo it could not follow the dotted line, but we met all other requirements including final demo

Verification

- Throughout the semester we measured the success of our systems using tests that we made based on information from the initial document and RFAIs
 - Printed a to-scale testing map
 - Created material bins
 - Used weights to imitate the real bins
 - For the aesthetics requirement, we sent out a survey

Justifying Design

- We didn't want to make our design decisions purely on conceptual decision matrices
- Instead, we created criteria and tested multiple designs on each one
- We recorded the merits and weaknesses of each, and used this to pick a design.

Aspects to Improve Upon

- Work to make dotted line following more accurate
- Add more 3D printed aesthetics

Our Total Cost

• We recorded the amount of time we spent on each major part of the project

Task	Hrs
Building	28
Testing	26
Software	33
Designing/Creating Parts	14
Meetings	5
Total	106
Total Amount	\$4240

